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Backqround: root aravitroDism. There is general agreement that,
in roots, the primary detection of the gravitropic signal occurs

in the columella cells of the cap and that this results in the

generation of a signal that moves into the elongation zone
causing the asymmetric growth that leads to downward curvature.

Recent work in this laboratory has focused on the nature of the

signal moving basipetally in gravlstimulated roots and how this

signal might be generated. Considerable evidence indicates that
auxin is the ultimate mediator of differential growth during root

(and shoot) gravitropism. The theory that auxin gradients

mediate curvature (Cholodny-Went theory) received support in a

recent study by Li et al. who generated transgenic tobacco

seedlings containing a chimeric gene consisting of an auxin up-

regulated RNA promoter fused to an E. coli B-glucuronidase (GUS)

open reading frame. GUS expression was enhanced by physiological
doses of auxin and, in gravistimulated plants, GUS expression was

greatest on the lower side of the stem. The asymmetry of GUS
expression was blocked by inhibitors of polar auxin transport.

While these studies add to the evidence that auxin mediates

gravitropic curvature, they do not address the question of how

the auxin asymmetry is generated or the question of the nature of

the signal moving from the cap to the elongation zone. If we
assume that an auxin gradient across the elongation zone is a key

element in gravitropic curvature, there seem to be two general
means of generating such asymmetry: 1) The auxin asymmetry may be

generated in the tip and maintained as hormone is transported
toward the elongation zone or 2) A signal may move in some other

form (e.g. electrical) from the cap to the elongation zone where

it initiates local asymmetric distribution of auxin. Because

calcium appears to be necessary for root gravitropism and because

tip-applied calcium gradients can induce curvature in maize roots

we have also investigated the potential involvement of this

cation either as a factor in the regulation of auxin transport or

as a factor in generating a signal moving from the cap to the

elongation zone.
Our recent work has addressed the following questions

relevant to this issue: 1) does gravistimulation induce

asymmetric auxin movement within the cap?; 2) do treatments that

enhance gravitropism alter cytoplasmlc calcium levels in root cap

protoplasts?; 3) are the electrical perturbations that occur in

the caps of gravistimulated roots restricted to the cap tissues

or do they also occur in the elongation zone?; and 4) to what

extent do changes in responsiveness to auxin (as opposed to



changes in auxin concentration) contribute to the motor response
of root gravitropism?

AsTmmetrlc auxin move_en_ across the cap, If gravi-detection by

the cap leads to local auxin asymmetry, one would predict

asymmetric movement across the root cap of label from applied _H-
IAA. We tested auxin movement across the caps of stimulated

roots and found that: 1} stlmulation induces movement of label

toward the bottom of the cap; 2) the kinetics of curvature and
the kinetics of auxin movement are correlated; 3) roots

preadapted to gravity (repeated brief stimulation without

curvature) show parallel alteratlons in the kinetics of auxin

movement and curvature upon prolonged stimulation; 4) neither

curvature nor asymmetric movement of auxin occurs in roots

depleted of Ca; and 5) gravistlmulated asymmetric movement of
auxin occurs in caps isolated from the root. These findings
indicate that both Ca and auxin are critical in the communication

between the cap and the elongation zone.

cytoplasmic calcium levels in root protoplasts. Incentive for
measuring intracellular ca derives from the observations that: 1)

Ca is necessary for root gravitropism; 2) stlmulation induces Ca
movement toward the lower side of root caps; 3) calmodulin

antagonists inhibit root gravitropism; and 4) in roots of dark-

grown seedlings that require light for orthogravitropism,

treatments (red light, ABA, water stress) that allow

orthogravitropism may increase cytoplasmic ca levels in cap
cells. Sievers and coworkers have shown that ER vesicles

accumulate Ca, and they postulate that sedimentation of

amyloplasts triggers release of Ca from the ER. This is
consistent with the model we proposed linking elevation of Ca to

asymmetric movement of auxin across the cap. However, we have
found that asymmetric movement of Ca across the cap is not

essentlal to gravitroplsm. When caps of intact roots were

plasmolyzed and then rehydrated, the roots showed gravitropism
with little or no asymmetric Ca movement. Also, Takahashi et al.

recently reported that curvature induction by tip-applied

gradients of calcium is away from the high side of the calcium

gradient rather than toward the high side of the calcium gradient

as reported in our initlal papers. We have also observed
curvature away from the high side of the calcium gradient in some

of our more recent experiments. This indicates that, although

calcium can induce directional growth responses in roots, the

nature of calcium involvement in root gravitropism requires more

study.
In order to assess the calcium status of root cells, we

loaded protoplasts from the cap and elongation zone of primary
roots of maize with fluorescent Ca indicators including the

potassium salts and acetoxymethyl esters of indo-1 and fura-2.
We found the free calcium level to be higher in protoplasts from

the elongation zone (257 ± 27 nM) than in protoplasts from the

cap (160 + 40 nM). It may be significant that cytoplasmlc free

calcium levels are low in the cap. The cap contains the putative



gravity-detecting cells and the cells across which asymmetric
calcium redistribution occurs. Cells low in free calcium should

be especially sensitive to sudden elevation of calcium.
As with similar studies in related plant systems the

interpretation of these data is complicated by the possibility of

alteration of the protoplasts during isolation. Also, we are
using a heterogeneous population of "root cap cells" instead of

purified columella cells.

Gravitv-induced chanqes _n i_tracellular potential. Dr. Hideo

Ishikawa of Kyorin University was a visiting researcher in this

laboratory from May of 1989 through August of 1990, during which

time he was supported by Project NAGW-297. While at Kyorin

University, Dr. Ishikawa studied gravity-induced changes in

intracellular potentials in primary roots of 2-day-old mung bean

seedlings. The electrodes were inserted into outer cortical

cells within the elongation zone. In vertical roots the

potentials of the cortical cells (2 mm behind the apex) were
about -115 mV. When the roots were placed horizontally the cells

on the upper side hyperpolarized to -154 mV within 30 s while

cells on the lower side depolarized to about -62 mV. This did
not occur in cells of the maturation zone.

These results may be very significant to understanding the

gravitropic response mechanism. Earlier studies of changes in

potential in stimulated roots reported responses in the cap but

not in the elongation zone. The timing (<30 s) of gravity-

induced changes in intracellular potentials in the elongation

zone is too rapid to be accounted for by hormonal transmission of

a signal moving back from the cap. It seems possible that the
changes in intracellular potential in the elongation zone result

from an early effect related to the transduction event itself or

even to direct gravity detection by cells in the elongation zone.

Kinetics of localized arowth rate chanqes, We used a computer-

based video digitizer system to analyze localized relative growth

rates along the top and bottom sides of graviresponding maize
roots. We found that curvature results both from enhanced growth

along the top and reduced growth along the bottom relative to

vertically oriented controls. There is also a period of backward

curvature (partial reversal of curvature) during the response.

During this phase, the growth pattern is reversed, i.e., growth
is enhanced along the bottom and reduced along the top relative

to vertically oriented controls.

Analysis shows that, during gravitropism, the normally

unimodal growth rate distribution along the elongation zone
becomes bimodal with two peaks of rapid elongation separated by a

region of reduced elongation rate. This occurs at different
times on the convex and concave sides of the responding root.

Also, during downward curvature the elongation zone along the
convex side extends farther toward the tip. During the period of

reduced rate of curvature or partial reversal of curvature, the

zone of elongation extends farther toward the tip along the
concave side. We believe that this shift in the boundaries of

the elongation zone is an important factor in root gravitropism.



T_me-dependent chanqes in responsiveness to auxin
Because of the evidence for changes in auxin sensitivity

along the top and bottom sides of gravi-stimulated soybean

hypocotyls, we became interested in the possibility that time-

dependent changes in auxin sensitivity contribute to the kinetics
of root gravitropism. We tested for "adaptation" to elevated

auxin levels by continuously recording the response of vertically
oriented roots to a sudden step-up in auxin concentration. The

roots were severely inhibited (as expected) by addition of 0.2 uM

IAA. However, after about 60 min some of the roots began to

recover and by 100 min they had resumed rapid growth, in some

cases as rapid as the rate prior to exposure to auxin. The rapid

growth continued even though the roots remained immersed in

auxin. A comparison of the growth rate distribution pattern
before addition of auxin and after recovery from auxin revealed

that, whereas growth was accounted for by cells throughout the

elongation zone in the controls, growth following recovery from
auxin inhibition was accounted for almost entirely by a group of

cells near the apical extremity of the elongation zone. We were

particularly struck by the fact that the pattern of growth rate
distribution following "adaptation" to elevated auxin was

essentially identlcal to that along the lower side of

gravistimulated roots during the phase of partial reversal of
curvature. From these and related observations we conclude that_

1) Maize roots can adjust their sensitivity to auxin in a time-

dependent manner followlng a step-up or step-down in ambient

auxin levels, and 2) such time-dependent adjustments in auxin

sensitivity are initiated by localized shifts in auxin

concentration and they play an important role in determining the

kinetics of the gravitropic response in roots.

Summar¥. our studies of the time course of curvature, auxin

redistrlbution/adaptation, and electrical potential changes in

maize roots have led to the following generalizations. 1)

Downward curvature begins 18-32 min following gravistimulation.

2) Asymmetric auxin redistribution across the root cad beglns at
about the same time as curvature or perhaps slightly earlier. 3)

There is a lag of approximately 15 min in the response of roots

to applied auxin. 4) Gravi-induced changes in intracellular

potentlals of cortical cells within the elongation zone (data

obtained from mung bean, not maize) occur within 30 s following
stimulation.

Collectively, items 1-3 above appear to invalidate the

Cholodny-Went hypothesis as applied in its simplest form to root

gravitropism. This is especially true when one takes into
account that estimated rates of auxin transport are approximately

0.5 to 1 cm h_. According to the Cholodny-Went hypothesis,

gravistimulation leads to auxin asymmetry in the cap and this

asymmetry is transmitted basipetally to the elongation zone where
it induces the asymmetric growth that leads to curvature. But
how can this be reconciled with the observation that auxin

asymmetry in the _ develops at the same time as or only

slightly earlier than the initiation of curvature in the



elongation zone? This leaves little time for 1) basIpetal

migration of auxin into the elongation zone and 2) events
associated with the latent period of auxin action on cell

elongation.

Apparent conflicts in the timing of events during root
gravitropism may be resolved if one considers the possibility

that the changes in intracellular potential in the elongation

zone are in response to a rapidly moving non-hormonal

(electrical?) signal generated by transduction events in the cap.

Hejnowicz and Sievers recently reported rapid waves of electrical

activity moving basipetally along the apical portion of

vertically oriented roots of _epidlu_. Alternatively, the

changes in intracellular potential in the elongation zone may

occur by a mechanism involving direct gravity detection by cells

in the elongation zone.
The kinetics of auxin action on root growth may also be more

consistent with gravitropism kinetics than previously thought.

We have preliminary data indicating that the inhibitory action of

auxin on root growth occurs within a few minutes in small roots
such as those of Arabidopsis or tomato. This indicates that the

latent period for auxin action is much shorter than previously

thought and that much of the latent period observed when auxin is

applied to larger roots relates to time required for uptake or
time to establish a particular local concentration profile.

In our future research we propose to 1) re-investigate the
kinetics of auxin action in small roots in order to determine the

true lag for auxin action on growth and assess the effect of root

geometry on the apparent lag; 2) investigate the potential role

of gated ion channels in the generation of electrical signals in
roots; 3) determine the relationship between intracellular

potential and growth rate; and 4) examine the biomechanical basis

for growth rate changes in the elongation zone and in the group

of cells just proximal to the meristem.
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